Functional characterization of two S-nitroso-L-cysteine transporters, which mediate movement of NO equivalents into vascular cells.
نویسندگان
چکیده
System L amino acid transporters have been shown to be responsible for cellular uptake of S-nitroso-L-cysteine (l-CSNO). In this study, we examined the characteristics of L-CSNO uptake in Xenopus laevis oocytes expressing system L transporters and found that uptake increased only when both 4F2 heavy chain (4F2HC) and either L-type amino acid transporter 1 (LAT1) or LAT2 light chain were coexpressed. The K(m) for transport was 57 +/- 8 microM for 4F2HC-LAT1 and 520 +/- 52 microM for 4F2HC-LAT2. Vascular endothelial and smooth muscle cells were shown to express transcripts for 4F2HC and for both LAT1 and LAT2. Transport of L-CSNO into red blood cells, endothelial cells, and smooth muscle cells was inhibited by 2-aminobicyclo(2.2.1)heptane-2-carboxylic acid (BCH) and by large neutral amino acids demonstrating functional system L transporters in each cell type. Uptake of L-CSNO led to accumulation of cellular S-nitrosothiols and inhibition of both growth factor-induced ERK phosphorylation and TNF-alpha-mediated IkappaB degradation. Similar effects were seen when cells were incubated simultaneously with S-nitrosoalbumin and L-cysteine but not with d-cysteine or with S-nitrosoalbumin alone. In each case, nitrosylation of proteins and cellular responses were blocked by BCH. Together, these data suggest that transmembrane movement of nitric oxide (NO) equivalents from the plasma albumin NO reservoir is mediated by cysteine, which serves as a carrier. The mechanism requires transnitrosylation from S-nitrosoalbumin to free cysteine and activity of system L transporters, thereby providing a unique pathway for cellular responses to S-nitrosoalbumin.
منابع مشابه
A cystine-cysteine shuttle mediated by xCT facilitates cellular responses to S-nitrosoalbumin.
We have shown previously that extracellular cysteine is necessary for cellular responses to S-nitrosoalbumin. In this study we have investigated mechanisms involved in accumulation of extracellular cysteine outside vascular smooth muscle cells and characterized the role of cystine-cysteine release in transfer of nitric oxide (NO)-bioactivity. Incubation of cells with cystine led to cystine upta...
متن کاملUnraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics.
The ability of oxyhemoglobin to inhibit nitric oxide (NO)-dependent activation of soluble guanylate cyclase and vasodilation provided some of the earliest experimental evidence that NO was the endothelium-derived relaxing factor (EDRF). The chemical behavior of this dioxygenation reaction, producing nearly diffusion limited and irreversible NO scavenging, presents a major paradox in vascular bi...
متن کاملS-Nitroso-N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)–Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H2S and GSH suppliers and as antioxidants: Results and overview
S-Nitrosothiols or thionitrites with the general formula RSNO are formally composed of the nitrosyl cation (NO+) and a thiolate (RS-), the base of the corresponding acids RSH. The smallest S-nitrosothiol is HSNO and derives from hydrogen sulfide (HSH, H2S). The most common physiological S-nitrosothiols are derived from the amino acid L-cysteine (CysSH). Thus, the simplest S-nitrosothiol is S-ni...
متن کاملThe mechanism of transmembrane S-nitrosothiol transport.
S-nitrosothiols have been suggested to play an important role in nitric oxide (NO)-mediated biological events. However, the mechanisms by which an S-nitrosothiol (or the S-nitroso functional group) is transferred across cell membrane are still poorly understood. We have demonstrated previously that the degradation of S-nitrosoglutathione (GSNO) by cells absolutely required the presence of cysti...
متن کاملNO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties.
Recent evidence suggests that sulfhydryl species can react with oxides of nitrogen under physiologic conditions and thereby stabilize endothelium-derived relaxing factor (EDRF) activity, but the presence of a specific in vivo thiol carrier for nitric oxide (NO) remains controversial. The single free sulfhydryl of serum albumin is the most abundant thiol species in plasma (approximately 0.5 mM) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 4 شماره
صفحات -
تاریخ انتشار 2007